skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kafle, Kaushal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Prior work has developed numerous systems that test the security and safety of smart homes. For these systems to be applicable in practice, it is necessary to test them with realistic scenarios that represent the use of the smart home, i.e., home automation, in the wild. This demo paper presents the technical details and usage of Helion, a system that uses n-gram language modeling to learn the regularities in user-driven programs, i.e., routines developed for the smart home, and predicts natural scenarios of home automation, i.e., event sequences that reflect realistic home automation usage. We demonstrate the HelionHA platform, developed by integrating Helion with the popular Home Assistant smart home platform. HelionHA allows an end-to-end exploration of Helion’s scenarios by executing them as test cases with real and virtual smart home devices. 
    more » « less
  2. Mobile application security has been a major area of focus for security research over the course of the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance and are hence sound y . Unfortunately, the specific unsound choices or flaws in the design of these tools is often not known or well documented, leading to misplaced confidence among researchers, developers, and users. This article describes the Mutation-Based Soundness Evaluation (μSE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix flaws, by leveraging the well-founded practice of mutation analysis. We implemented μSE and applied it to a set of prominent Android static analysis tools that detect private data leaks in apps. In a study conducted previously, we used μSE to discover 13 previously undocumented flaws in FlowDroid, one of the most prominent data leak detectors for Android apps. Moreover, we discovered that flaws also propagated to other tools that build upon the design or implementation of FlowDroid or its components. This article substantially extends our μSE framework and offers a new in-depth analysis of two more major tools in our 2020 study; we find 12 new, undocumented flaws and demonstrate that all 25 flaws are found in more than one tool, regardless of any inheritance-relation among the tools. Our results motivate the need for systematic discovery and documentation of unsound choices in soundy tools and demonstrate the opportunities in leveraging mutation testing in achieving this goal. 
    more » « less
  3. Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines, and it leads to 11 key findings with serious security implications. We combine several of the vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home platforms on the practicality of security analysis. Our findings draw attention to the unique security challenges of smart home platforms and highlight the importance of enforcing security by design. 
    more » « less